Partially integrable nonlinear equations with one higher symmetry
نویسندگان
چکیده
In this paper we present a family of second order in time nonlinear partial differential equations, which have only one higher symmetry. These equations are not integrable, but have a solution depending on one arbitrary function.
منابع مشابه
Solutions structure of integrable families of Riccati equations and their applications to the perturbed nonlinear fractional Schrodinger equation
Some preliminaries about the integrable families of Riccati equations and solutions structure of these equations in several cases are presented in this paper, then by using of definitions for fractional derivative we apply the new extended of tanh method to the perturbed nonlinear fractional Schrodinger equation with the kerr law nonlinearity. Finally by using of this method and solutions of Ri...
متن کاملIntegrable (2 + 1)-Dimensional Spin Models with Self-Consistent Potentials
Integrable spin systems possess interesting geometrical and gauge invariance properties and have important applications in applied magnetism and nanophysics. They are also intimately connected to the nonlinear Schrödinger family of equations. In this paper, we identify three different integrable spin systems in (2 + 1) dimensions by introducing the interaction of the spin field with more than o...
متن کاملIntegrable multidimensional versions of the nonlocal nonlinear Schrödinger equation
Two new integrable nonlocal Davey–Stewartson equations are introduced. These equations provide two-spatial dimensional analogues of the integrable, nonlocal nonlinear Schrö-dinger equation introduced in Ablowitz and Musslimani (2013 Phys. Rev. Lett. 110 064105). Furthermore, like the latter equation, they also possess a PT symmetry and, as it is well known, this symmetry is important for the ...
متن کاملIntegrable multidimensional versions of the nonlocal nonlinear Schrödinger equation
Two new integrable nonlocal Davey–Stewartson equations are introduced. These equations provide two-spatial dimensional analogues of the integrable, nonlocal nonlinear Schrö-dinger equation introduced in Ablowitz and Musslimani (2013 Phys. Rev. Lett. 110 064105). Furthermore, like the latter equation, they also possess a PT symmetry and, as it is well known, this symmetry is important for the ...
متن کاملComplete integrability of derivative nonlinear Schrödinger-type equations
We study matrix generalizations of derivative nonlinear Schrödinger-type equations, which were shown by Olver and Sokolov to possess a higher symmetry. We prove that two of them are ‘C-integrable’ and the rest of them are ‘S-integrable’ in Calogero’s terminology. PACS numbers: 02.10Jf, 02.30.Jr, 03.65.Ge, 11.30.-j Submitted to: Inverse Problems † E-mail address: [email protected]...
متن کامل